
- _____ ____

I ~)—AOb6 859 COLORADO UNIV BOULDER DEPT OF COMPUTER SCIENCE FIG 9/2
AN LAIR(S) PARSER GRAMMAR FOR FORTRAN .(U)
.flJN 78 R C RAL*IAUSER DAAG29—7e—G—ookG

IJICLASSIFIED CU-CS—129 78 ARO—1507’e.2—M NL

~~n.ntu

‘I

p
~~~~~~~~~~~~

-

~~~~~

--- —

ALO / ~ D7~~~~~~

LEVELjr
UNIVERSITY OF COL ORADO

AN LALR(l) PARSER GRAMMAR FOR FORTRAN

Russ C./ Rauhauser
De artment ~~~~~~~~~~~ I ence

Univers ity of Colorado at Boulder
Boulder , Colorado 80309

LU
I CU-CS-129-78 L ~ Jun_ .T~~’78

H

tH
DEPARTMENT OF COMP UTER SCIENCE

Technical Report

Ub~~~~U~~L~Qi

~it — -
~

-———— -
~

-——-- ____________
I~~~~~~ &— — ~~~~~

~~~~~~~~~~~~~~~~~~~~ _ _



-

-

AN LALR( l) PARSER GRAMMAR FOR FORTRAN

Russ C./ Rauhauser~De a ment~~f~~ m~u~~FScience
~ >— University of Colorado at Boulder
0—. Boulder , Colorado 80309

/ /  CU-CS-129-78 j~~ 78 .
‘

c_3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•

f

y

INTERIM TECHNICAL

U. S. ARMY RESEARCH OFF I CE

CONTRAc~~~~ /DAAG29-78-G-~~46

~~~~

JUL

Approved for public release ;
Distribution Unlimited

7/V~/ ~“ ‘
I 

~~~~~~~ J / f

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT

OF THE ARMY POSITION , UNLESS SO DESIG-

NATED BY OTHER AUTHORIZED DOCUMENTS.

cj

We acknowl edge U. S. Army Research support
under contract no. DAAG29-78-G-0046 and
National Science Founda tion support under
qrarit no. MCS77-02194



• SECURITY CLASSIFICATION OF THIS PAGE (JI?i s~i Oat. ~nt.r.d)

READ IN STRUCTION SREPORT DOCUMENTA 11ON PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER

~~~~~~~~~ 

[2.
OVT ACCESSION NO.1 3. RECIPIENrS CATALOG NUMBER

4. TITL E (ond SubtiU.) 5. TYPE OF REPORT 4 PERIOD COV ERED

“An LALR(1) Parser Grammar for FORTRAN

— 6. PERFORMING ORG. REPORT NUMBER

7. A ij ruoR(.) S. CONT RACT OR GRANT NUMIER (.)

• Russ C. Rauhauser DAAG29-78-G-0046 ~~~~~~~~~~

MCS77-02194 —IV SF
9. PERFORMING ORGANIZATION NAM E AND ADDR ESS tO . PROGRAM ELEMENT . PROJECT . TASK

AR EA & WORK UNIT NUMBERS

Dept. of Computer Science
Univ. of Colorado at Boulder
Boulder, Colorado 80309 _____________________________

ii. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE -
U. S. A rmy Research Off ice June l97~Post Of f i ce Box 12211 13. NUMBEROF PAGES

Res ear~h Triangle Park , NC 27?09 55
14. MONITORING AGENCY NAME & AOORESS(lf dltt. ,.nt lrone ConIrotilná Of tic .) 15. SECURITY CLASS. (of this ?•port)

Urn ’ 1as~~j fj e d
IS.. DECL A SSI FICAT ION/DOW NORADING

SCHEDULE
NA

IS. DISTRIBUTION STATEMENT (of this R.porf)

Approved for public release; distribution unl imi ted .

17. DISTRIBUTION STATEMENT (of eli. abilr.cI .nI. ,.d In Block 20, II dli l.,.nC from R.porl)

NA

It . SUPPLEMENTARY NOTES

The f i nd ings in th is report are not t~ be c’ ’ri -~t. rued a:~ an ~il’fic~ a.L
Depart ment of the Army posi t ion , un L e~~- de~;~~rnated by other au thor i zed
document s .

19. KEY WORO S (Continu, on r.v. r.. .ld• Ii n.c..Iary id ld•nhily by block numb.,)

FORTRAN ciramma r, parser grammar , LAL R(I), structure tree

30. A B ST RACT (ConUnu. cm ,...q.. .id. ii n•c•s•a?y ond fd.ntlf y by t’lOck numbar)

‘IAn automatic parser generator is a tool for quickly imple~entinn proc’ramminalanc,uane parsers. Parser aenerators based upon LR parsin g have been built for
nramrnars satisfying the LR(O), SLR(l), and LALR(l) properties. Speed of the
resultin o parser is comparable to that of a hand coded recursive descent parser.

DAVE, an automatic program testing aid , requires a flexible , easy-to-implemen
parser. This report presents an LALR(l) grammar for ANSI standard FORTRAN ,

DD1~~~
M,3 ~473 EDITION OF I HOV SS ,S OBSOL Et E

SECU RITY C L A S S I F I C A T I O N OF THIS PAGE (U~i.n Data EntSt d)

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



SECURITY CLASSIFICATION OF THIS PAGI(Whw Dala *iisPSd)

N 20.
“~ suitable as input to an automatic parser qenerator. Its use in bui ldlnn DAVE

provides a measure of t~~Idesired flexibilit y , since new parsers for FORTRAN
dialects may be produced by simply modif yinci the existina grammar.

A powerful meta- lannuane is used to desc~’fbe~ the grammar. Its features are
summarized , Includ ina the method for spec i fylno automatic construction of
(intermediate-text) structure trees durin a parsinci . The report concl udes with
a discussion of some of the more important decisions made during development
of the aramar.

SECURIT Y C LA SSI r ICAT I O N OF THIS PAGE(II7,m, Data Enf.,.d)

__________________________________ -



rr 
~~ - ~~~~~~~~~ -.- -

CONTENTS

I. INTRODUCTION Page

II. THE GRAMMAR
1. Meta-language review 3
2. Grammar listing 15

I II. DI SCUSSION

1. Information Sources 25

2. Completeness 25

3. Scanner Interface 26

4. Right-recursion 28

APPEND ICES

A - Structure Tree Diagrams 31
B - Expression Grammar Transformations 45

BIBLIOGRAPHY 55

mis white Sectiot
DOC Butt Such 0
UB ANN O U N CED 0
JUSTIFICATION —.

BY 
O ISTRIBUTICN/AVAIUII LITY cOOES

Dish. AV AIL. 2fld/~ SPECIAL

~~~~~~ - - _.____:~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~
-:• .

~~
• — - ~~-— —.9 • •~~~~ -~ .-- — . -

--,
~
•----———-.—— ,.~~

•
~ •-.-- • -

FIGURES

FIGURE Page
1. Meta-language keywords and special symbols 4

2. Tokens representing FORTRAN keywords and
special characters 5

3. Tokens requiring subrosa information 7

4. Structure tree representing A = B + C 10

5. Tree node stack during parse of A B + C 12

6. Parse stack during parse of the FORTRAN statement
EXTERNAL A , B, C 29

Bi. Simple grammar for FORTRAN expressions 46

82. Grammar with logical and arithmetic expressions
combined 48

83. Expression grammar after four steps of back
substitution 50

84. Grammar after many steps of back substitution
and simplification 52

B5. Expression grammar after back substitution in
the arithmetic expression sub-grammar 53

B6. Final LALR(l) grammar for FORTRAN expressions 54

~~~~~~~~ .



Abstract

An automatic parser generator is a tool for quickly implement-
ing programming language parsers. Parser generators based upon LR
parsing have been built for grammars satisfying the LR(O), SLR(l), j
and LALR(l) properties. Speed of the resulting parser is comparabl e
to that of a hand coded recursive descent parser.

DAVE , an automatic program testing aid, requires a flexible , easy-
to-implement parser. This report presents an LALR(1) arammar for ANS I
standard FORTRAN , suitabl e as input to an automatic parser generator.
f~~~~~T~~~iiaing DAVE provides a measure of the desired flexibility ,
since new parsers for FORTRAN dialects may be produced by simply modify-
ing the existing grammar.

A powerful meta-lanquage is used to describe the grammar. Its
features are summarized , including the method for specifying automatic
construction of (intermediate-text) structure trees during parsing .
The report concludes with a discussion of some of the more important
decisions made during deveTopment of the grammar. 

....
~~
. 

~~ .~~~~,• •.~—-.-- .—-——-..—-- 
~.



I. Introduction

Context-free grammars are widely recognized as appropriate tools for
describing the syntax of programming languages. Their formality has allowed
the language designer to communicate precisely and unambiguously his in-
tended structure , and more recently has allowed the language impl ementor
to automatically generate the parsing phase of his compiler.

FORTRAN was developed before the usefulness of grammars was fully
appreciated . Its standard document El] uses English prose to communicate
syntactic structure. Since FORTRAN has already been widely implemented , a
FORTRAN grammar might appear to be of little practical use today.

Recent interest ~n the development of software validation tools ,
however, has kept the market for efficient , easy-to-generate FORTRAN parsers
very much alive. The DAVE project [2], currently under improvement at the
University of Colorado , is an example.

DAVE is an automatic program testing aid which performs a static
analysis of programs written in ANSI standard FORTRAN. Experience wi th
DAVE has uncovered a sizeabl e demand for diagnostic aids capabl e of
analyzing FORTRAN ~dialects” as well. One solution is to provide a flex-
ibl e tool which may be easily converted to any of the FORTRAN variants.
The use of an automatic parser generator provides a step toward the desired
flexibility , since new parsers may be produced by simply mod ifying a basic
grammar.

The purpose of this report is to present a FORTRAN grammar which:
1) captures the structure of ANSI standard FORTRAN at the parsing

level , and
2) satisfies the LALR (1) property , a condition required by the

BOBSW parser generator system.
Details of the exact grammar requirements of the BOBSW system, and its use - 

-

in producing a parser for the DAVE project, may be found in [3].

It is assumed that the reader is familiar with grammars , their rela-
tion to programming languages , and the parsing process. A good elementary
treatment may be found in Gries [4]. Hopcroft and Ullman [5] provide a
more theoretical approach to grammars and their properties. The operation
of a parser generator based upon the LALR(l) property is described in
LaLonde [6].

- — --—.-——-——~~ .——.--~. - - ——.-~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. ~~~~ .—.~~-— ———- —-- . —~.• — — ~- -



-
~~

-1
I

-2-

Section II contains a listing of the FORTRAN parser grammar and a I

review of the meta-language used to describe it. Section III concludes

wi th a di scussion of some important decisions made during development of

the grammar.

I,



- .d-

l l .  The Gramma r

Keywords and special symbols belonging to the meta-language used
in this report are shown in Figure 1. Al though keywords will appear
underl i ned in the grammar listing to follow , they are actually reserved
and may not be used as nonterminal symbols.

The meta-language has been designed to accept nested “sub-gramma r”
definitions. To facilitate machine checks on proper nesting , each grammar
is delimi ted by a pair of keywords :

parser Fortra n_compilation unit:

end Fortran compi 1 ati on un it

The name following parser identifies the goal symbol of the grammar, and
must exactly match the name following end. A terminating colon on the
parser line allows the grammar wri ter to optionally omi t the preceeding
name (it may never be omi tted from the end line). In this case, the
first production of the grammar serves to identify its goal symbol .

Productions are unordered and written in free form syntax. A
sharp (#). which may appear anywhere in the grammar, indicates that the
remaining portion of the current line is to be treated as a comment.

Non-termi nal symbols are written as a sequence of one or more alpha-
betic , numer ic , or underbar characters , beginning wi th an alphabetic.
Terminal symbol s are delimi ted by single quotes, and may consist of any
sequence of printable characters except the single quote and blank.

The terminal symbols of a parser gramar correspond to token s re-
cei ved from a scanner module at parse time . Two kinds of tokens can be
identified . The first kind may be described as representing entities
having a unique form in the source language . A complete list of such
tokens for FORTRAN , representing keywords and special characters, is
given in Figure 2. A careful inspection of this list will reveal the
absence of several FORTRAN keywords and the addition of several new
ones. A discussion of issues relating to these anomalies is deferred
to Section III.

~~~~~~I~~t - —. — 
-~~~~~~~~~~~ -.--.~.- --

- -
~~~~~~~~~~~~~~~ :~~~~~~~~~~~~~~~~~ 

- 
: :--

~~~~~=~~~~~

-4-

parser

list ‘ (single quote)
ru st

•

>

->

+

*

=,

Figure 1.
Keywords and special symbol s belonging
to the meta-language used to describe
the grammar of this report.

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ : j .  •-,~~~: - ~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~ ~:!-~ - - .;•~~.,  • .~~
..., ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



-- —~~ - - -~..- -‘~~~--~~~~~~r ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-5—

SUBROUTINE DATA
FUNCTION COMMON
EXTERNAL DO
DIMENSION ASSIGN
EQUIVALEN CE TO
LOGICAL GOTO
INTEGER CALL
DOUBLEPRECISION STOP
COMPLEX PAUSE
REAL READ
OR WRITE
AND REWIND
NOT BACKSFACE
BLOCKDATA ENDFILE
RETURN FORMAT
CONTINUE EOS
END LOGIF

ARITI-IIF

II t

+

*

**

Figure 2
Complete list of terminal symbol s
(tokens) which represent FORTRAN
keywords and special characters .

~~~~~ 
I
~
.• ~~~~~ ~~ ~ -.. - -•~~ - . - - -- .--~-.-.•

-6-

The second kind of token represents entities which do not have a
unique representation in the source language . For example , a given pro-
gram may contain many different integer constants . When the scanner
module returns a token of type “integer constant ’, it must also inc l ude
some subrosa information indicatin ç~ the exact integer chosen by the
programmer. Figure 3 gives a complete list of all such tokens as they
will appear in the FORTRAN grammar of this report. Sample subrosa
information is shown for each token . Notice that angle brackets are
used to distinguish tokens requiring subrosa information from the
simpl e tokens of Figure 2.

The following example illustrates how a production may be written
in its most basic form.

Slash — > ‘1’ ;

The production separator symbol (_ >) is preceeded by a single nonterminal
and fol lowed by a sequence of zero or more terminals , nonterminals , and
meta-synibols. A semicolon terminates the production .

— Very often a nonterminal symbol will appear as the left hand side of
more than one production . There are two (equ ivalent) ways of conveniently
grouping such productions together:

Field

— > Basic_f i e l d
-> Groupi;

and

Field
-> Basic_field~Groupl;

The vertical bar indicates alternation , and may also appear with parentheses
to effect a kind of “distributive ” property. For example ,

Program_unit
-> (SubprogramjProgram_body) ‘END’ ;

Is equiva l ent to
Pro gram_unit
-> Subprogram ‘END’
-> Program_body ‘END ’ ;

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
- -“-. -.-.-.-~~-



—I,

-7-

<name> <la el> <Iconst>

<Rc nst> <DPconst> <Octconst>

3// 5 ~~ \~~~4 7
/] \7

<H onst <Lcons

• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ‘7’i~~~.

< lb >

~~ 5<~~~~~~~~~2

Figure 3
Complete list of terminal
symbols (tokens) which require
associated subrosa information .

•~ -. —
~~~~~~~~~~~~~~~ 

-— -—-— -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~ ~~~~—— —— ~~~~ ~~~~I -_ ——--——---



_: ~~~~~~~~ ~~~ TT~~ 

_;i— 

- - 

~~~ 

-
— - - - -

Two meta-symbols have been included to more conveniently describe
the concept of repetition . A trailing plus character (+) indicates “one
or more” of the entity which preceeds it. For example ,

Sep -> Slash +;

is written to express the fact that a separator may consist of one or
more slashes. This same concept may be described without the plus, but
requires one additional production:

4 Sep
-> Slash
-> Sep Slash;

Similarly, a trailing asterisk (*) indicates “zero or more” of the entity
which preceeds it.

Keywords list and ru st have been included to more conveniently
capture the syntax of ordinary lists of objects. For example , the
production

Ext
— > ‘EXTERNAL ’ ‘<name> ’ list ‘ , ‘

is written to indicate that a FORTRAN external statement must contain the
word EXTERNAL fol l owed by a list of one or more names separated by comas.
Expressing the list concept without a special keyword requ ires an addi-
tional nontermi nal and two more productions:

Ext
-> ‘EXTERNAL ’ Name_list;
Name_i i st
— > ‘<name> ’

-> Name list ‘ , ‘ ‘<name> ’ ;

The keyword ru st is distinguished from list only by the fact that
its elimination results in a right recursive expansion instead of a left
recursive one :

Ext
— > ‘ EXTERNAL ’ ‘ <name> ’ ru st ‘ , ‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~


IUU UU~~~~~~

-9-

expands to
Ext
-> ‘EXTERNAL ’ Name_list;
Name_i ist
— > ‘ <name> ’
-> ‘ <name> ’ ‘ , ‘ Name_list;

Right recursion is sometimes necessary to achieve the LALR(1) property,
as will be demonstrated in section III.

The basic activity of a programming language parser is to discover
the structure of an input program and to verify that the syntactic rules
of the language have not been viol ated. In many cases, the parser also
transforms source code into a suitabl e intermediate form so that later
processing is made easier. One possibility is conversion to a structure
tree, where relationships among the syntactic units of a program are
represented in tree form. For example , the FORTRAN assignment statement

A=B+C

could be represented in intermediate form by the structure tree shown in
Figure 4.

The meta-language used here contains mechanisms which allow the
grammar writer to specify tree building activities . A brief summary of
LR parsing is given to help explain how tree construction may be

combined with the parsing process.

LR parsing may be viewed as a sequence of read and reduce actions.
During a read action, the parser requests the next input token from the
scanner module and , depending upon its current state and the token re-
ceived , moves to a next state. The new token is pushed onto a parse
stack, where a summary of the “already seen” portion of source text is
maintained .

Reduce actions become possible whenever the top symbol(s) of the parse
stack exactly match the symbol(s) on the right hand side of a grammar pro-
duction . (For LR(l) parsing , the appropriateness of a reduction may be
determined by looking no more than one token ahead in the input stream.)
During a reduce action , the matching symbols are removed from the stack and
replaced by the single nonternilnal which appears on the left hand side of

~~á,.1g
~~~~~~~~~~~ 

1..’ ~~~~~~~~ - ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— —  —------—-- . -

~~~ ~~ - 7~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~_..


<

nam70m

~~

10

~~

lus

<name> <name>
I I
I I
I I
B C

H

______~~~ure 4
Structure tree corresponding to the FORTRAN
assignment statement A B+C. Note that the
variable names are actually sub—rosa infor-
mation attached to <name > leaves, and are
not considered nodes of the tree. . -

— 11 —

that production , and a new state is entered. The objective is to continue

with read and reduce actions until there are no more input tokens to read
and only the goal symbol of the grammar remains on the parse stack.

Tree construction is carried out during the reduce actions of parsing.
An additional stack, called the tree node stack, is added to facilitate
the linking of nodes i nto a tree. The exact process is best described by
an example.

Suppose the grammar writer would like to specify the construction of
structure trees for assignment statements. For example , he would like a
parse of A=B+C to result in the tree of Figure 4. Assume for now that
just two grammar productions are needed to describe assignment statements:

Basic_stmt —> ‘<name> ’ ‘ = ‘ Expression ;
Expression —> ‘<name> ’ ‘ + ‘ ‘<name> ’;

His major task will be to imagine how such statements will be parsed ,
and to identify the order of the various reduce actions that will take
pl ace. To illustrate , a parse of A=B+C is described .

First, the parser receives a <name> token from the scanner , with “A”
included as subrosa information. Since this activity is a read action ,
the <name> token is pushed onto the parse stack. Whenever the parser ’s
tree-building option is turned ON , receipt of a terminal symbol delimited
by angle brackets will also result in the creation of a correspond ing tree
node. This new node is then pushed onto the tree node stack as shown in
Figure 5(a).

Next, the scanner supplies a token representing the FORTRAN equals
sign. Although this token participates in parse stack activities , it does
not result in creatior of a new tree node since surround ing angle brackets
are not present in the production for Basic_stmt. - 4

Receipt of the next <name> token , corresponding to variable B, resul ts
in actions identical to those for variable A. The modified tree node
stack is shown in Figure 5(b). Note that the parse is now “following ” the
production for Expression.

The next token, representing a FORTRAN plus symbol , results only in
parse stack activities (why?). Finally, a <name> token corresponding to
variabl e C is read , resulting in the tree node stack of Figure 5(c).

— --~~ . -,- - —--- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --. - -—~~~~~~~~
•
~~~~

-‘-- .
~~~~~ ~~~~~~~~~~~~~~~~~~~ 

-
~~~ 

- 
~~~~

—--

-- — --- -
~~~~~~~~~ 

- - ~~~~-~-.-.~~~~r’- - 
—--~-—~~-

Fr
- - 

—1 2—

_ _ _ _ _ _  
TOP—~ <name> --C

_______ TOP—I <name> —-B <name> --B
TOP—ø <nalne> ——A <name> --A <name> ——A

• .
• . •
• •

(a) (b) (c)
A f ter receipt of A f ter rece ipt of A f ter receipt of
token representing token repr esen t ing token re presen ting
variable A variabl e B var iable C

TOP lus • ______________

• I�name> --A ________

• L<name>~~—— B
• ~<name>~ ——C

(d)
After reduction of

Expression —p ‘<name> ’ ‘ + ‘ ‘<name>’ ) ‘plus ’;

~op~~ ecome~ 

~~~~~~~~~~~~narne~~~--A

Af ter reduc tion of
Basic stmt —~ ‘<name) ’ ‘ = ‘ Expression => ‘becomes ’;
(Compare with the tree of Figure 4)

Figure 5
Modifications of tree node stack
d u r i n g parse of the FORT RAN statemen t

A = B + C

-.- —

-13—

It now happens that the top three symbol s of the parse stack exactly

match the symbols on the right hand side of the production for Expression .
A reduce action involving this production is therefore indicated , and

carried out. The grammar writer may specify that tree building activities

should also be performed at this time by augmenting his grammar production
with a double right arrow meta-symbol (=>).

For exampl e, if he wr i tes

Expression
-> ‘ <name> ’ ‘+‘ ‘ <name> ’ > ‘plus ’ ;

then during any reduce action involving that production , a new tree node
is created and labeled “plus ”. This node is then automatically linked
into the existing tree structure by means of the following actions :

1) The two <name> nodes at the top of the tree node stack, corres-
pond ing to the two <name> nodes on the right hand side of the
production for Expression , are linked as sons of the new “plus ”

node.
2) The sons are then popped from the tree node stack and replaced

by their parent.

The result of these actions for the current example i s shown in —

Figure 5(d).

The parsing process continues with a reduce action involving the

production for Basic_stmt. The fact that more tree bu ilding is desired

may be indicated by writing

Basic_stmt
-> ‘<name> ’ ‘ = ‘ Expression => ‘ becomes ’ ;

In thi s case, a new “becomes” node is created and linked into the exist-

ing tree structure as shown in Figure 5(e). Notice that the resulting

tree is Identical to the one shown in Figure 4, and has been created
“bottom up ”.

During l inki ng of the “becomes” node , the Expression nonterm inal in
the production for Basic_stmt corresponds to a single node on the tree

node stack (specifically, the “plus ” node). It should be noted that

nonterminals whi ch preceed a + or * repetition meta-symbol may correspond

- --~~~~~~~~~- ____________________

-14-

to more than one stack entry. An automatic counting mechanism is
provided to handle these cases.

This completes the review of meta-language features. A listing
of the FORTRAN parser grammar follows . Although construction of an
intermediate structure tree has been completely specified by means
of the double right arrow , the reader may wish to consult Appendix A
for a more graphic description of tree shape .

- - ~~
~~~~~~~~~~~~~~~~~~~~~~



-15-

parser Fortran_compilation_unit:

#Overai l program structure :

Fortran_compilation_un i t

-> Program_unit + => ‘compile ’ ;

Program_uni t
-> ‘<label> ’ Subprogram ‘END’ => ‘labeled ’
-> (Subprogram~Program_body) ‘END’
-> ‘<label> ’ ‘BLOCKDATA ’ ‘EOS ’ Blockdata_stmts => ‘label ed ’
-> ‘BLOCKDATA ’ ‘EOS ’ Blockdata_stmts ;

Bi ockdata_stmts
-> Specification* Data_stmt* ‘END ’ => ‘blockdat a ’ ;

Subprogram
-> ‘SUBROUTINE ’ ‘<name> ’ Subrtnjarameters ‘EOS’

Program_body => ‘subrouti ne ’

-> Rtrn_type ‘ FUNCTION ’ ‘ <name> ’ Parameter_list ‘EOS ’
Program_body > ‘function ’;

Subrtn_parameters
-> Parameter_list
-> => ‘ parameters ’ ;

Parameter_i ist
— >  ‘ ( ‘  ( ‘ <name> ’ list ‘ ,‘) ‘)‘ => ‘ parameters ’ ;

Rtrn_type
-> Type
-> => ‘default’ ;

Type
-> ‘ INTEGER ’ => ‘integer ’
-> ‘REAL ’ => ‘ real ’
-> ‘DOUBLEPRECISION ’ => ‘doubleprecision ’
-> ‘COMPLEX’ => ‘ complex ’
-> ‘LOGICAL ’ => ‘logical ’ ;

Program_body
-> Body_groupl* Body_group2 Body_group3* => ‘body ’ ;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- -

-16-

Body_group 1

-> Specification

-> External_stint
-> Format_stmt ;

Body_group2
-> Executable_stInt
-> Function_or_array;

Body_group3
-> Executable_stInt
-> Function_or_array
-> Forma t_stmt
-> Oata_stmt ;

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~ ~~~~-— -~~~~~~~ - --
~~~~
— --—



— I - _______

# FORTRAN declarations:

Specification
-> Spec ‘EOS’ -> ‘<label > ’ Spec ‘EOS ’ => ‘labeled ’ ;

Spec
-> ‘DIMENSION ’ (Array_dcln list ‘ ,‘) > ‘dimension ’
-> ‘COMMON ’ Corn_block]. Com_block_rest* => ‘common ’

-> ‘EQUIVALENCE ’ (Equiv_list list ‘,‘) => ‘equivalence ’
-> Type (0cm _element list ‘ ,‘) > ‘declaration ’ ;

Array_dcln
-> ‘<name> ’ ‘ ( ‘  Subscr_list ‘) ‘  Typej laceholder => ‘array ’ ;

Subscr_list
—> Integer > ‘ , ‘

-> I nteger ‘ , ‘ Integer >

-> Integer ‘ , ‘ In teger ‘ , ‘ I nteger > ‘ , ‘ ;

Integer
-> ‘-<Iconst> ’ -> ‘<name> ’ ; # Integer variable

Type_pi acehol der
-> => ‘default’ ;

Com_bl ocki
-> Com_namel 0cm _list > ‘bl ock ’ ;

Com_namel
— >  ‘ / ‘  ‘<name> ’ ‘ / ‘
—> ( ‘/‘ ‘ / ‘  ) => ‘bl ank’ ;

Corn_block_rest

-> Corn_na me_rest Dcln_l i s t  > ‘bl ock’ ;

Corn_name_rest
-> ‘ / ‘  ‘<name> ’ ‘I’
— >  ‘I’ ‘I’ => ‘blank’ ;

Dcl n_list
-> Coninon_dcin _element l i s t  ‘ , ‘ 

~~
>

Common_dc 1 n_el ement
-> ( ‘ <name> ’ ~Comon-array);

~~~~~~~ -~~- ;_~~ _ _~~ — -~~~ -- - - ~~~~~~~~~ -— --—~~~~- ~~ - -~~ - -~~~ -— -~~~~~~_~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ —


‘1~

~~~~~~~~~~~~~~~~~~~~~~~~ - —~~~~
--

~ -- - -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—
~
--_

~ 
--  - - -‘-‘~ ii~~-~~ 

-
~~ -- — —j-- - - - - — — —_

-18-

Coninon array
-> ‘ <name> ’ ‘ ( ‘  Ico nst_list  ‘)‘ Type_placeholder => ‘array ’ ;

Equiv_1 ist
-> ‘(‘ Declarator ‘ , ‘ (Declarator list ‘ ,‘) ‘)‘ => ‘ share ’ ;

Decl arator
-> ‘ <name> ’
-> ‘<name> ’ ‘ ( ‘  Iconst_list ‘ ) ‘  => ‘el ement’;

Iconst_l ist
— >  ‘<Iconst> ’ > ‘ , ‘

— >  ‘<Iconst> ’ ‘ ‘  ‘<Iconst> ’ => ‘ , ‘

— >  ‘<Iconst> ’ ‘ , ‘ ‘<Iconst> ’ ‘ , ‘ ‘ < Iconst> ’ => ‘ , ‘ ;

Dcl n element
-> ( ‘ <name> ’~Array_dcln);

External_stmt
-> Ext ‘ EOS ’ -> ‘<label > ’ Ext ‘EOS ’ > ‘labe led ’ ;

Ext
— >  ‘EXTERNAL ’ (‘<name> ’ list ‘ ,‘) => ‘ external ’ ;

• Data_strnt

-> Data ‘EOS ’ -> ‘<label > ’ Data ‘EOS ’ => ‘label ed ’ ;

Data
— >  ‘DATA’ (Data_pair list ‘ ,‘) => ‘dat a ’ ;

Data_pair
—> Dec larator_l i s t  ‘I’ Data_list  ‘I’ => ‘ pair ’ ;

Declarator_list

-> Declarator list ‘ ,
‘ => ‘dec larators ’ ;

Data_list
-> Data _item list ‘ , ‘ => ‘dataiterns ’ ;

Data item -

-> (‘<Hconst> ’ 
I ‘ <Lconst> ’ Data_n umber )

-> ‘ <Iconst> ’ ‘~~~‘ (‘<Hconst> ’I ‘<Lconst> ’ Data number) =>

- - -~~-. ~~~~~~~ ~~~~~~~~~~~~ - -- -
-~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -——-——-—=--=-.~ -- —

~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~p.

-1 9-

Data_number
-> Complex_const

-> Number
-> ‘+ ‘ Numb er -> ‘- ‘ Number ~~> ‘neg ’ ;

Compl ex_const
-> ‘(‘ Cconst_element ‘ , ‘ Cconst_element ‘)‘ =~

. ‘cconst ’ ;

Cconst element

— >  ‘ <Rconst> ’
-> ‘+‘ ‘<Rconst> ’ ->

‘
— ‘ ‘ -<Rconst> ’ => ‘neg ’ ;

Number
-> ‘ <Iconst> ’ -> ‘ <Rconst> ’ -> ‘ <DPconst> ’ ;

L~~~-L :~~~~
-. - -  - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
4

• -20-

FORTRAN format statements:

Format stmt
-> ‘<label > ’ Frnt ‘EOS ’ => ‘labeled ’ ;

Fmt
-> ‘FORMAT’ ‘(‘ Slash* ‘)‘ > ‘format’
-> ‘ FORMAT ’ ‘(‘ Slash* (Field list Sep) Slash* ‘)‘ => ‘format’;

Slash
— > ‘I’ ;

Sep
— > ‘ , ‘ —> Slash +;

Field
-> Basic_f ie ld —> Groupi

Basic_field
-> ‘<Hconst> ’ -> ‘<Fmt fld> ’ ;

Groupi
-> Repeat_count Fmtl => ‘group ’ ;

• Fmtl
- • — > ‘(‘ Slash* ‘) ‘ > ‘format’ ;

— > ‘(‘ Slash* (Field]. list Sep) Slash* ‘)‘ => ‘ format ’ ;

Field]. -

-> Basic_field -> Group2

Group2

-> Repeat_count Frnt2. => ‘group ’;

Fmt2
— > ‘(‘ Slash* ‘)‘ > ‘format’
— > ‘(‘ Slash* (Basic_field list Sep) Slash* ‘)‘ => ‘format’;

Repeat_count
-> ‘<Iconst> ’ -> > ‘one ’ ;

- - --~~~~~~~~~~~~~~~

• -21-

FORTRAN function_or_array statements:

Function_or_array
—> Foa ‘EOS’ — > ‘<la bel> ’ Foa ‘EOS ’ => ‘labeled ’ ;

Foa
— > ‘ <name> ’ ‘(‘ Exprn_list ‘)‘ ‘ ‘ Expression > ‘ foa ’ ;

It FORTRAN executable statements :

Executable stmt
-> Exec ‘EOS’ -> ‘<label > ’ Exec ‘ EOS ’ ~~> ‘label ed ’ ;

Exec
-> ‘DO ’ ‘<label > ’ ‘<name> ’ ‘ = ‘ Do_parameters ~~> ‘do ’
-> ‘LOGIF’ ‘(‘ Logical_exprn) ‘ Basic_stmt => ‘logif’

-
.

-> ‘LOGIF’ ‘(‘ Paren_name ‘)‘ Basic_stmt ‘logif’
-> Basic-stmt;

Do_parameters
-> I nteger ‘ , ‘ Integer >
-> Integer ‘ , ‘ Integer ‘ , ‘ Integer ‘ , ‘ ;

• Basic_stmt
• -> ‘<name> ’ ‘ = ‘ Expression =‘ ‘ becomes ’

-> ‘ASSIGN ’ ‘<label > ’ ‘TO ’ ‘<name> ’
~~

> ‘assign ’
-> ‘GOTO ’ ‘ <label> ’ => ‘goto ’
-> ‘GOTO ’ ‘(‘ Label_list ‘) ‘ ‘ , ‘ ‘<name> ’ ~~> ‘compgo ’
— > ‘GOTO ’ ‘ <name> ’ ‘ , ‘ ‘ (‘ Label _list ‘)‘ ~~> ‘assigngo ’
-> ‘ARITHIF’ ‘(‘ Arith_exprn ‘)‘ ‘<label > ’ ‘ , ‘

‘ <label> ’ ‘ , ‘ ‘ <label> ’ => ‘arithif’
-> ‘CALL’ ‘<name> ’ Call _ar gs => ‘call’
-> ‘RETURN ’ => ‘ return ’
-> ‘CONTINUE ’ => ‘continue ’
— > ‘STOP ’ => ‘ stop ’
-> ‘STOP ’ ‘-<Octconst> ’ > ‘stop ’
-> ‘PAUSE’ => ‘ pause ’
-> ‘PAUSE ’ ‘<Octconst> ’ => ‘pause ’
-> ‘REWIND ’ In teger ~~> ‘rewind ’

-22-

-> ‘BACKSPACE ’ Integer => ‘backspace ’
-> ‘ENDF ILE ’ In teger => ‘endfi l e ’
-> ‘READ ’ ‘(‘ Integer Fruit ‘)‘ Possible_ tO_list =‘ ‘ read ’
-> ‘WRITE ’ ‘(‘ Integer ‘ , ‘ Form ‘) ‘ Possib le_ lO_list => ‘write ’

-> ‘W RITE ’ ‘(‘ Integer Form_p l aceholder ‘)‘ 10_list => ‘write ’ ;

Label_i i St
— > ‘<label> ’ list ‘ , ‘ >

I
,

’ ;

Cal l_args
=> I

,
,

— > ‘(‘ (‘ -<Hconst> ’ Expression) l ist ‘ , ‘ ‘)‘ > ‘

Fruit
-

-> Form_placeholder
— > ‘ ,‘ Form;

Form
— > (‘<label> ’

I
‘<name> ’) => ‘fmt ’;

Form_pi acehol der
-> > ‘frnt’;

• Possible_TO_list
—> - => ‘iollst’
— > 10_list;

10_list
-> (Named_value~’(’ Named_value ru st ‘ , ‘ ‘)‘

I’(’ Iteration_list ‘)‘) ru st ‘ , ‘ => ‘j o u st’ ;

Iteration_list
-> (Named_value l ’ (’ Named_val ue ru st ‘ , ‘ ‘)‘

~
‘(‘ Iteration_l i s t ‘) ‘)

‘ , ‘ Do-specification > ‘iterate ’
—> (Named_value~’(’ Named_val ue ru st ‘ , ‘ ‘)‘

I ’ (’ Iteration_l i s t ‘) ‘)
‘ , ‘ Iteration_list => ‘iterate ’ ;

Do_specifi cation
-> ‘ -<name> ’ ‘ = ‘ Do_parameters => ‘do_spec ’ ;

k~ii _ _

- ---——— _- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
---—-—— —

—— •-- ~~~~~~~~~~~
-

-•

-

-23-

It FORTRAN expressions:

Expression
-> (Logical_exprn Arith exprn);

Log i cal_~Aprn
-> L_term
-> Logical_exprn ‘OR ’ (L_term~Paren_name) => ‘ or ’
-> Paren name ‘OR ’ (L termf Paren name) > ‘ or ’ ;

L_term
-> L_factor
-> L_term ‘AND’ (L_factor j Paren name) => ‘and ’
-> Paren name ‘AND ’ (L_factor~Paren name) => ‘and ’ ;

L_f actor
-> L_primary

•

— > ‘NOT ’ (L_primary~Paren_name) => ‘not ’ ;

L_primary
-> ‘ -<Lconst> ’
-> Relational_exprn
-> ‘(‘ Log ical_exprn. ‘) ‘ ;

Relational_exprn
-> Arith_exprn ‘-<Relop> ’ Arith_exprn => ‘relop ’ ;

An th_exprn
-> Paren name
-> Simple_AE;

Simple_AE
-> A_term
-> Simple_AE ‘ + ‘ (A_termlParen_narne) => ‘plus ’

• -> Simple _AE ‘ - ‘ (A_termlParen_name) => ‘minus ’
-> Paren name ‘ + ‘ (A_termjParen_name) => ‘plus ’
-> Paren name ‘- ‘ (A_termjParen_name) => ‘minus ’
-> ‘+‘ (A_termlParen_name)
-> ‘ - ‘ (A_termlParen_rtame) => ‘neg ’ ;

~~~~~~~~~ ~~~~~~~~~ ~~~ ••-~~~—~~~• i~~~~
_ i_ 

- •~~~~~~~~~~~~~~~~~~~~~~~~~



-24-

A_term
-> A_factor
-> A_term ‘~~~‘ (A_factor lParen_narne ) => ‘mult’
-> A_term ‘I’ (A factor I Paren nam~) => ‘div ’
-> Paren_name ‘~~~‘ (A_factor l Paren_narne) > mult’
-> Paren_name ‘I’ (A factor lParen_narne ) => ‘cliv ’;

A_factor
-> A_primary
-> A_primary ‘~~~~ ‘ (A _primary l Paren_name) > ‘pwr ’
-> Paren_name ‘‘~~~~‘ (A_primary~Paren _name ) ‘ pwr ’ ;

A_primary
-> Number
-> Co~npl ex const
-> ‘(‘ Simple_AE ‘)‘ ;

Paren name
-> Named_value
-> ‘( ‘  Paren name ‘)‘ => ‘ parens ’ ;

Named_value
-> ‘ <name> ’
->  ‘ <name> ’ ‘(‘ Exprn_l i s t  ‘ ) ‘  => ‘ apply ’ ;

Ex prn_list
— >  Expression list ‘ , ‘ ‘ , ‘ ;

end Fortran_compila t ion _unit

~



-25-

III. Discussion

The FORTRAN parser grammar was derived in two steps . First , a
straightforward grammar was written to capture ANSI standard FORTRAN ,
without regard to the LALR(l) property. The resulting grammar was then
modified to attain LALR(l).  A discussion of issues relating to these
steps is given in the four sub-sections below.

Information sources
The document entitled “USA Standard FORTRAN , X3~9 - 1 966 ” [1] served

as the basic reference for syntactic structure. Syntax charts developed
by Mcllroy [8) were later used to verify that the initial grammar was
a “correct” interpretation of the standa rd .

Completeness
Some aspects of FORTRAN syntax are not easily specified In a narser

grammar. The following syntax rules must be processed after the pars-
m g  phase (references to the standard are shown in parentheses).

1) The integer constant zero may not appear
a) as a declarator subscript in an array declaration

(7.2.1.1) , or
b) as a data item replication factor in a DATA initializa-

tion statement (7 .2 .2) ,  or
c) as a parameter in a DO statement (7. 1.2.8) .

2) A statement label must be greater than zero (3.4).

3) Statement function definitions must precede the first execut-
able statement of the given program unit (9.1.1) (Some state-
ment function definitions cannot be syntactically dis-
t inguished from assignment statements in which an array
element appears to the left of the equals sian) .

4) The dummy arguments of a statement function definition must oe
dist inct variabl e names (8.1.1).

5) The expression appearing to the right of the equals sign in
a statement function definition may only contain
a) Non-Ho llerith constants
b) Variable references
c) Int~’insic function references

-

~ 1___ 
- - -~~~

-
~-_--•- ~~~~~~~~~~~~ • — = -  —--  .—_ -• • -  — —  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~- - -- - --—...•~m


-

~~~~~~~~ _26i

d) References to previously defined statement functions
e) External function references

Note that array element references are excluded . (8.1.1)

6) A RETURN statement may not appear in the main program (7 .1.2 .5) .

7) Since arrays must be defined with 1 , 2, or 3 dimensions (7 .2 .1.1),
array elements must be specified with no more than 3 sub-

scripts (5.1.3.2)~
8) Array element subscripts must be written as one of the follow-

•ing constructs
C * V + k
c * v _ k

c * v
v + k
v — k

V

k

where c and k are integer constants an~1 v is an integer van-

abl e reference (5.1.3.3).

• - 9) The number of subscripts of an array element in an EQUIVALENCE

statement must correspond to the dimensiona lity of the array
declarator or must be one (7.2.1.4).

Scanner Interface

A scanner interface may be specified by listing all of the token
types to be passed from scanner to parser , together with conventions
regard ing the transmission of subrosa information . Figures 2 and 3
list the FORTRAN token types used in the parser grammar of this report.
Although the choice of token types for FORTRAN is generally straight-

forward, several decisions were guided by more subtle considerations
and are worthy of special mention .

The end-of-statement (EOS) token is made necessary by the fact
tha t READ and WRITE stateme nts need not contain input /output l ists.
For example , both WR ITE (6 ,l000 ) and WR ITE(6 ,1000)YMA X are legal state-
rnents according to the rules of ANS I standard FORTRAN. Suppose tha t
EOS tokens were not supplied by the scanner module , and a FORTRAN oroqram

- :1. —



-27-

conta ined the following statement sequence:

WRITE (6 ,l000)
YMAX~~~l

A problem occurs when parsing reaches the end of the WRITE statement: it

is impossible for a parser with only single character look-ahead to tel l

whether the next token , YMAX , is part of the WRITE statement or part of
the following assignment statement. The inclusion of an interven inq

EOS token (generated by the scanner) resolves this ambiguity .

Early versions of the FORTRAN qrammar expressed IF statement syntax
by means of the following productions:

Exec ~~- ‘ IF’ ‘(‘ Logical exprn ‘)‘ Basic stmt ;
Basic stmt —

~ ‘IF’ ‘C ’  Ari th exprn ‘)‘ ‘ <label> ’ ‘ ,‘

‘<la bel> ’ ‘ ,‘ ‘<la bel> ’ ;

Unfor tunate ly , these productions are not LALR (l). The problem occurs

when an IF statement of the form IF(A)... is encountered . The parser
cannot decide (with just sing le charac ter look-ahead) whether to reduce

the named value , A , to a logical expression or an arithmetic expression.

Discovery of this problem led to the realization that ambi guit ies

involving named va l ue appear in other contexts as well. Appendix B

gives a complete account of the problem , and details the extensive set
of expression grammar transformations necessary to solve it.

The results of Appendix B add one more production to the description

of IF statemen t , but do not so~ve the original problem :

Exec -
~ ‘ IF’  ‘ ( ‘  Lo gi cal ex prn ‘)‘ Basic stmt
+ ‘IF’ ‘C ’  Paren name ‘ ) ‘ Bas ic stmt;

Basic stmt -
~ ‘ IF’ ‘ C ’  Anith exprn ‘ )‘ ‘ <label > ’ ‘

‘<label> ’ ‘ I, ’ ‘<label> ’ ;

Now when the parser encounters a Paren name (i.e., a named va l ue surround-
ed by zero or more sets of parentheses), it cannot decide whether to con-

tinue reading or to reduce tha t Paren name to An ith_exprn . Intuitively,

the reason is that the parser does not know which kind of IF statement 

.-
~~- - - -- - - .. --- - - . - . - - -- - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~- - 1T . !1-~• -~



- “-
~~~~~~~~

- — ~rz~ :~~~~~~~~ -

-28-

is being parsed until after the reduce decision has been made.

The probl em is solved by providing two token types for the IF key-
word , one for logical if statements (LOGIF) and one for arithmetic if
statements (ARITHIF):

Exec ‘ LOGIF’ ‘ (‘ Logica l _exprn ‘) ‘ Basic_stmt
+ ‘ [0GW ’ ‘(‘ Paren name ‘)‘ Basic stmt ;

Basic_stmt -
~ ‘ARITHIF ’ ‘(‘ Anith_exprn ‘)‘ ‘<label> ’ ‘ , ‘

‘ <label > ’ ‘
,‘ ‘<label> ’ ;

Right Recursion

Recall from section II that both list and rlist may be used to ex-
press the syntax of ordinary lists of objects. Their only distinguish-
ing feature is that list results in a left recursive expansion , while
ru st results in a right recursive one . Alth ough Figure 6 clearly demon-

strates that left recursion is preferred in LR parsing because it results

in a smaller parse stack , right recursion is sometimes necessary to

achieve the LALR(l) property .

The FORTRAN standard describes the syntax of input/output lists as

fol l ows:
“A list is a simple list , a simple list enclosed in parentheses ,

a DO-impl ied list , or two lists separated by a comma . Lists are

formed in the following manner. A simple list is a variabl e name , an

array element name , or an array name , or two simple lists separated

by a comma. A DO-impl ied list is a list followed by a comma and a

DO-implied specification , all enclosed in parentheses. ”

This complex (and confusing!) structure may be expressed by the follow-

ing grammar productions , where the nontermina l Named_value stands for

variabl e name , array element name , and array name , and Iteration list

may be considered a synonym for DO-impl ied list:

IO_l 1st
-
~ (Named_val ue I ‘C ’ Named_value ru st ‘ , ‘ ‘)‘

I ‘ (‘ Iteration_i 1st ‘) ‘) rl ist ‘ , ‘

Iteration_list
+ (Named_value I ‘ C ’ Named value ru st ‘ , ‘ ‘)‘

hA~
t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



-~~

-29-

Name_list
EXTERNAL

•
•
•

(a)
With lef t r ecursive
gr ammar produc tion

Ext —> ‘ EXTERNAL ’ ‘<n a m e > ’  l ist ‘
,
‘
;

<name > (B)

<name > (A)
EXTERNAL

.
•
•

- 
(b)

With right cecursive
g r a m m a r  pro d u c t i o n

Ex t  ——-> ‘ EXTERNAL ’ ‘<name >’ r u s t ‘ , ‘ ;

F i g u r e  6
Parse stack just before the name

C is read during parse of the FORTRAN statement
EXTERNAL A ,B,C

_

~

_. — _
~~ 

_ —
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ -_ ---—----—‘-


-30-

I ‘ C ’ Iteration list ‘)‘) ‘ , ‘ Do specification
-÷ (Named_value ‘C ’ Named_value rlist ‘ ,‘ ‘)‘

‘(‘ Iteration_list ‘)‘) ‘
~~~~

‘ Iteration jist;

To see that right recursion is necessary , consider a parse of the
statement

WRITE(6,l 000) (A(I), I ,I=1 ,5)

Receipt of the opening parenthesis of the I/O list indicates to the
parser that either a named value list or an i teration list follows . If
left recursion has been used to specify named value lists , then a
read/reduce conflict occurs after receipt of the next token , represent-
ing array element A(I). The parser cannot decide whether to immediately
reduce this token to Named_value_list , or to continue reading because
an iteration list is involved . The basic problem , then , is that the
parser cannot distinguish between named value lists and iteration lists
until either a closing parenthesis is read (indicating the former), or
the receipt of a FORTRAN equals sign indicates that a Do-specification
is being parsed. The use of right recursion (rlist) in specifying named
value lists solves the problem by delaying all reductions until the entire
I/O list has been seen.



-31 -

APPENDIX A 

J

STRUCTURE TREE DIAGRAMS

I



- -  — - --~~~ - - -

- - -32-

0 - 0  0 0  0 0 ) 9 - 4
Cl) .Cz w u )  0) 0 1  00 ’o .-i ~~~~~(1) .00

.40 ~~4 I 4  CO O
C O W  ( 0 0 ’  0)

o CI) U) ‘ 4 0 0’0 0 )  0 0)  ‘0
Z Qi.C 01.C •o .1.’ .4.) C

>1 ~ 4) 4) 0
C O  C 0 . C

0 09-4 09-4 (0 (00)0(0
‘-I

CL. I I I
‘-I I I I

U)

ci)
C)
.C 4) 0)
4-’ .C

(0 4.4 4)
C 4-1 0
o o . • 9-4 •
(I) (0~~-. 0—

( 0 ( 0  C U )  U)
4-1 C —  O~~- C f l —
o ow  ( 0 0 )  C C )

U) Cl) W Q i  01 O Q i
Z Z >1 ( 0 > 1o 0 0) 0 )4 )  .1-i

U) .0 1-’ 0 m
E-i C .  0 V  E ’O ‘0
Z C C )  0)

0 C~~~ . 4  ~~~~ 4 0-- ’
0 ~~, 9-4 0 4-4 ‘4-’

Z 4J .C 0~ -’ ..-4 -~~o 0 - U )  0 0 0  c 4 0
O (0 0 ) 0 )  0)

X U )  CO4 0)01 .01
Z O W  N W  r-4 U)

z
I I I
I I

. CE
o > , W , — l fli 0~~~ ( 0 4) 0)
C ‘0 0 ) 0 1  --‘ 0 0) v

C O  .C t1~ i

0’ C .~~~W •  ~~~C 0 .-’~~~C .C 0 C C  ..4 C- .4 O
U) . o 9 - 4 0 o 0  C)

..4 4 4  ,.4 (fl ..4 V ‘0
‘0 4-’ 0 ( 0

0 .C ~ .-U~~ C O
Z . C ~~~~C i-i

4) W U)~~~~ 4.) -’-4 9-4 1
V ‘ O C O  ‘4-4 4 0 . 0  ‘0o O O . C C Q) ‘-I C C)
C C U ) WO V  ,-4 U) 00 . C

I I I
I I I

n
-

~ 
-

~ 
-~~ tu

0 ‘~‘

-- - - -  —~ — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--— -

~~~~
-- -_

-33-
THIS PAGE IS ~~~~ ~t. IT ?

I~UN ~~~r~t ~~~~~~~ ~L? ~
L)C

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—I

4
IL

(Ii ~~

1
_
i 

-J~~~~&j J O

S

.

1— 
4- 

0
I—

I,)

I-. -
‘

~~~ /k~~~

1 ’

-

~~~~~~~~~~~~~ 

_ 
H

r J  
L.
w

& A ~ z~
_

w ~~ w 4 z c _~

o l ~~
0 

z

0

0 a



—
~~

-
~~

-
~~~

-- - _

L

2
2

L —
____1_i~

_
~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

—
~~~~~~~ ~~~~~~~~~~~ — —



.

~~~~~~

- :~_~~~~~ T~

~~rs PAGE I-S BEST ~UALIT!

C

Ad

‘I s- - -
,

Id- I

~~~~ 
—~~~~~

-

~~
- r~( 

:•
_ _ t.-;-~ -

.

~~~~~~~~~~~~~

4
-

‘—
t
l_____ t_____.t _~~__ — — .~~~ ‘— —.----—— — -——- — — — — ~~~~~~~~~~

_______ -
~~~~~~~~~~~~~~~~~~ 

______________________________________________  -

-36-

z0

.

,

> 1W

o*~I-

0 1

~(74

I •/ 

—--~~~-~~~~
-- 

~~~~~~~~~~~~~~~~~~~~~~~~


- - -

THIS PAGE I-S BEST QUALITY PFACTICAELI
~~OM CO?X ~URNISkiED TO DDC

‘3

w

4

0

w
k

1—uJ ‘I

w ~~~~~ >~~v~c

IL) (.L~

DL. I— .

“ I

a
/-‘ ~—

t..l ’~ z
I L — ~~ i~~~

1~
,.r____

~~~“L~~~ ~
ni r
L~~~~~~~~~~~~~~~~~

1

A
‘
Si

L ~~ :, —- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

--
~~~~~

- - -

-38-

I..,

z
Li ‘1 2

0

0

~~
w

~~ 1

~~~~~~~~~~ t&  - - - ~ - -- - - -  - 
_ _ _ _ _ _ _ _ _ _ _ _ _



-- — r - - — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~— 

•--
~

- - :— - ~~~~ —~ -- - ___________

— ~~~~~~

.— —-—

,

-39-

F—fl

w
3

-
—S

9
I—

-‘~~

.

, I- z
2I- 0

UI -~~

~~~~~~- - - -- ---- — - - --- -----~~~~~~
- _ _ _ ~~~~~~~



-~ .,-

-40-

• 
4” 

~~

•

~~~

-

-

~~~

I --

¼)

,z 
~~ 

-

~~~~~~~~~

I 4 ~~~) “I ‘1

? -
~~.

—
~~~~~~~~~~

-
~~~~~

--
~~~~~~

- ~‘~~~~~-~~~~f~~ --_ - - -——~~~~~ -~ —~~~~~- - —~~~~-~~~~~~~~ — — -



- —-- -- ~~~~~

z

U)

n~— h

z
Z

I

‘A
~4~

A1 z ‘I
St

L -

-

~ - ~~~~ 
— -  --- —~~~--- ~~rn 

-- - - 
-—~~~-~~~~ -- ~~~~-



-

~~~~~~

-42-

j’T~i

.1~ ~~~~~~~--~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~-~~ - -- - ~~~

-43-

~
ITY

T~BOM
coFi FuE1~IS

‘S.

‘4.
’

2
.0

2 -(

8
51.4

A

~L
0~

~ 4

‘I

w

-- —--~~-~~~ ~~~~~ - ~i:~:::: z~~ ~~~~~ _ _ ~~~~~~~~~~~~~ -:~~~~~~~~
_ -

~~ -

-44-

WI
Is’

F

:
‘/

z

I’)

Fl
-

—— —-~~ ±~~~~~~
--—

~~
-—-

~
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ -- ~~~

--

~~~~~

- --
~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~~~~~~~~~

- - - .- —•

- - - - -
______ - - —~~~~~~~~—~~~~~~

-45-

~~pend ix B

Expression Grammar Transformations

A straightforward grammar for FORTRA N expressions is shown in
Figure 81. The following abbreviations are used :

E - expression

LE - logical expression
LT - logical term -

LF - logical factor
LP - logical prima ry
<Lconst> — logical constant (.TRUE., .FALSE.)
RE - relational expression
AE - arithmetic expression

AT - arithmetic term

AF - arithmetic factor
AP - arithmetic primary
N - number (integer, real, or- doubl e precision constant)
CC - complex constant
NV - named value (simple variabl e, array element, or function call)

-
- Notice that this grammar allows a named value (NV) to appear in any

context where either a logical expression (LE) or an arithmetic expression
(AE) is required. For exampl e , in the FORTRAN logical if statement

IF CX) GO TO 10

the named value X plays the role of a logical expression , while in the
arithmetic if statement

IF (Y) 20, 30, 40

V takes the part of an arithmetic expression .

A serious probl em occurs , however , when a named value Is asked to
f ill the role of a general expression CE). For example, the right-hand-
side of an assignment statement simply requires an expression ; either
logical or arithmetic will do. When a named value is encountered in
this context , the parser does not know how to reduce that named va lue to
expression: should it first reduce to logica l primary (LP) and then con-
tinue with reductions involving logical entities , or should it first

_ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~

__ - -

---—
,-----—

~~

~

-46-

E -
~ AE

E ~ LE

L E- ~~~~ LT AE + AT

LE -+ LE ‘or ’ LI AE -‘- AE ‘ + ‘ AT
LT -

~ LF AE -
~ AE ‘ - ‘ AT

LT -
~ LI ‘and ’ LF AE -

~
‘ + ‘ AT

LF -
~ LP AE ÷ ‘ - ‘ Al

LF ~~
- ‘ not’ LP Al AF

LP ~~- ‘-<Lconst> ’ AT -
~ AT ‘~~~‘ AF

LP RE AT -
~~ Al ‘I’ AF

LP ~~- ‘(‘ IF ‘) ‘ A F -
~ 1W

LP -
~ NV AF 1W ‘‘~~~~‘ 1W

A P + N

AP + CC
AP -’- ‘(‘ AE ‘) ‘
AP ÷ NV

Figure Bl
A simpl e grammar for FORTRAN expressions

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ -- --- ~~~~~~~ L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



‘l’— 
- -- - - - -  -

~~~

~~~

-—- . -

~~

-- -_ 
~—.-~- 

r -- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ “ . ~~~~~~~~ — — -_:_~i~~: .~~~~ --~~--- —-- - - _ -

-47-

reduce to arithmetic primary (AP) and take the “arithmetic route”?
Both paths eventually l ead to expression .

As a result , the grammar shown in Figure 81 is not LALR(1). Intui-
itively, the reason is that type attributes of named values are not known
during parsing.

One possible solution to the type distinction problem is to combine
the separate sub-grammars for log ical and arithmetic expressions into a
s~--”le grammar, similar to the approach taken In Pascal [7]. Ihe result-
ing grammar is shown in Figure 82. Extra processing will now be required
durinq later phases of analysis to verify that:

1) expressions do not inappropriately contain both logical and
arithmetic operators , and

2) logical and arithmetic expressions correctly appear in contexts
• where they are required.

Unfortunately, the grammar of Figure B2 is not LALR(l) either. The
production required for relational expression (RE) has caused the non-
terminal E to become both l eft- and right-recursive. Pascal avoids this
problem by placing the syntactic description for relational expression
“higher ” in the grammar. This arrangement has a side effect of requiring
parentheses in logical expressions of the form :

(x<5) AND (V>3).
Since the 1966 ANSI Standard clearly indicates that such parentheses
are not required in FORTRAN , it is not possibl e to similarly mod i fy the
grammar of Figure B2. Thus , the combined sub-gramma r approach to attain-
ing the LALR(l) property must be abandoned .

Consider again the simple grammar of Figure 81. Another possible
solution is to remove one of the productions LP -~ NV or AP + NV. Ihi s may
be accomplished by use of the well-known “back substitution ” techn ique,
a process which guarantees that the language being generated does not
change (see Lemma 4.2 in [5]). LP -‘ NV Is arbitrarily chosen for removal .

During back subsititution , two new productions are added to compen-
sate for the loss of LP ~~

- NV:

LF -
~~ ‘not’ NV

LF -+ NV.

-

~

-

~

— --~
------

~~~~~~~~ .. ~~~~~ - - - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ • - --~~~ _ . -_ .~~_ _ . _ - _ _ - ‘ - - - -- - -_-- 


— --- •-~~~- ~-,
~
- _ •_____

~~~~~~
‘_
~~•_c4 ~~ . —.------

-48-

E -~ T
F -‘- ‘+‘ T
E + ‘ - ‘ I
E -‘- E ‘ + ‘ T

E~~~~~~~~E ‘or ’ I
T + F

I -~- 
~~ 

• * ‘  F

T + T  ‘and’ F
F + P

F -‘ ‘not ’ ~

P -’- CC
P— ’ ‘ ( ‘  E ‘ )‘
P ÷ ‘<Lconst> ’

- . P -’- RE
P-* NV

RE -
~

- E ‘<Relop>- ’ E

Figure B2

Gramar with logical and arithmetic expressions combined .
The production for RE causes E to become both left- and right-
recursive.

.

~

_ --
~~~ 

- _ _ - . - - - - - _ _ - _ --- - -- - . --- _ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ .~~~~
• -- -

~~~
-•--- 

~—



- - -— --~~~~~~~-~~~~~~—- -~~~~~~~

-49-

Notice that the second of these is another of the form a -÷ NV (where ~ is
some non-terminal ) and must therefore be removed. Figure 83 shows the
grammar that results after four such applications of back substitution .
The table below indicates the production removed at each step:

STEP PRODUCTION REMOVED
1 LP ÷ NV
2 LF -* NV
3 LT -’- NV
4 LE -’ NV

The important consequence of this action has been to remove LP -
~ NV

in favor of E NV. On the surface it appears tha t ~ similar removal of
AP -

~ NV will solve the problem , since E NV wou~d then be the only re-
maining production of the form ct NV . However , the back substitution
designed to eliminate LP -

~ NV has uncovered a deeper problem. Consider ,
for example , the FORTRAN assignment statement X = (V~, in which a paren-
thesized named value appears in a context where a general expression is
required . There are still two poss ibilities for reduction to F:

1) By using LP ÷ ‘ ( ‘  NV ‘ ) ‘  as the first step in the reduction , or

• 2) By first reducing NV to AE (using AP NV as a first step ) and
then by reducing ‘ ( ‘  AE ‘ ) ‘  toE (via the production AP ‘(‘ )\E ‘ ) ‘ ) .

It is now clear that the problem with the simple gramriar of Fi gure Ri
is not just one of reducing NV to E, but Involves the reduction of paren-
thesized NV’s as well , where nesting levels may be arbitrarily deep!

With this in mind , imagine the effects of continuing with more
rounds of back substitution . Each round beg ins with elimination of
a production

LP —~ ‘ ( ‘ • • • ‘ ( NV ) • • • ‘ )

where the depth of nesting has Increased by one from the previous round .
The grammar grows larger and larger , but a convenient pattern has
emerged: newly added productions are similar to those seen In Figure B3,

but wi th ever-increasing sets of parentheses surrounding those posi-
tions where an NV appears.

If this process were to continue indefin itely, a new non-ter-
minal could be introduced to take advantage of this pattern :

- -•~~~~~~~~~~~~ . -  — 
-- -~~~- ~~~~-- - -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _:
~~

-50-
.

E ÷ A E
E ÷ L E
E + NV

LE + LT AE ÷ AT
LE ÷ LE ‘or ’ LI AE -‘- AE ‘ + ‘ AT
LE LE ‘or NV AE AE ‘ - ‘ AT

• LE ÷ NV ‘or’ LT AE ‘ + ‘ Al

LE ~~
- NV ‘or ’ NV AE -

~
‘- ‘ Al

LT ÷ LF AT -’- AF

LT + LT ‘and’ IF AT ÷ AT ‘~~~‘ AF
IT + LT ‘and ’ NV AT + AT ‘I’ AF

LI -‘ NV ‘an d’ LF AF ~~
. AP

• LT ÷ NV ‘and ’ NV AF -
~~ AP ‘“~~~ ‘ AP

LF + LP AP ÷ N

IF + ‘not’ LP AP -* CC
IF ÷ ‘not’ NV 1W + ‘ (‘ AE ‘) ‘

LP -‘- ‘-<Lconst> ’ AP -‘ NV
LP -‘ RE

• LP÷ ‘ (‘ tE ‘) ‘

LP+ ‘(‘ NV ‘) ‘

EX -
~ ‘LOGiF’ ‘ (‘ LE ‘)‘ BS

EX + ‘LOGIF ’ ‘ (‘ NV ‘)‘ BS

Figure B3

Expression grammar after four steps of back substitution .

The additional production required for log ical-If statement

Is also shown, with abbreviations :

EX - executable statement
‘LOGIF ’ - IF token for logical-if statement

BS - basic statement (any executable except DO or
logica l -If)

L:_ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

S

-

-51 -

PNV ÷ NV
PNV + ‘ (‘ PNV ‘1’.

This non-terminal , pronounced “parenthesized named value ” , captures
the notion of a named value enclosed by zero or more sets of paren-
theses. It may be used to “collapse ” similar productions , thereby
shortening the grammar without changing the language generated .

Figure B4 shows the simplified qrammar which results. Notice
that a potentially troublesome production , of the form

• LP -~~ ‘ (‘ .- . ‘ (‘ NV ‘) ‘ . . .- ‘) ‘ , has been safely dropped from the grammar
since after a sufficiently large number of back substitutions it repre-
sents a logical primary containing so many parentheses that there is
not room to fit them all into a standard FORTRAN statement (limited
to 19 continuation lines).

When a similar process is applied to arithmetic expressions , as
shown in Figure B5, the orig inal problem finally disappears. Stand-
alone named values (possibly enclosed in parentheses) may be unambig-
uously reduced , first to PNV and then to E. Named values appearing
in more complicated expressions are recognized by the productions
which were added during back substitution .

Although the grammar of Figure 85 satisfies the LALR(1) property ,
it is convenient to simplify it by means of the followinci steps:

1) Replace all occurrences of AE in the grammar to SAE (simple

arithmetic ex pression). The productions for F become :
E LE
E -~~ SAE

• E - * PNV

2) Introduce a new “intermediate ” non-termina l AE , such that:

E ÷ IE

E + AE
AE -

~
. SAE

AE + PNV

3) Use the new non-terminal to collapse productions involving

basic statement CBS) and relational expression (RE).

The final LALR(l) grammar for FORTRAN expressions is shown in
• Figure B6.

~

-

~

-- • - -

~

--

~

- . - - - - ---- -~~~~~~- ~~~~~~~~~~~~~ - -~~~~~~~~~~

- —
~
_- _

~~
-- -~~~~L~ ==:-_ --

—

— -

-
-
~
--T::T:T ~_:L ~~~~~~~~~

• -52-

E -‘ AE
E -‘- LE
E -~~ PNV

PNV NV
PNV ÷ ‘ (‘ PNV ‘) ‘

LE~~~LT A E + AT
LE -~

. LE ‘or ’ LI AE -
~
- AE ‘ + ‘ AT

LE -,. LE ‘or ’ PNV AE AE ‘- ‘ AT
LE + PNV ‘or ’ IT AE ‘ + ‘ AT
IE + PNV ‘or ’ PNV AE + ‘- ‘ AT
LT + LF AT + AF

• LT ~~
. LI ‘and’ LF AT + AT Y~’ AF

IT + IT ‘and’ PNV AT -.. AT ‘/ ‘ AF
LI ÷ PNV ‘ and ’ IF AF -

~~ AP

LI -‘ PNV ‘and’ PNV AF + AP ‘~~~~ ‘ AP

LF ÷ LP A P - * N
LF + ‘not’ LP AP + CC
IF ‘not ’ PNV AP -* ‘ (‘ AE ‘1’
LP -‘ ‘ <Lconst> ’ AP ÷ NV
LP -. RE
LP -, ‘ (‘ LE ‘) ‘

EX + ‘ LOGIF’ ‘ (‘ LF ‘) ‘ BS
EX ‘LOGIF’ ‘ (PNV ‘) ‘ BS

Figure B4
Graninar after many steps of back substitution and sub-
sequent simplification via the introduced nontermlnal

PNV .

— .. — --- -

-
_ _ _ _

-
_ _ _

F + AE
E ÷ L E

F -
~~ PNV

PNV -‘~ NV
PNV ÷ ‘C ’ PNV ‘)‘

LE ÷LT AE -* AT

LE ÷ LE ‘or’ IT AE ÷ AE (‘ +‘
~~

‘- ‘) AT

LE + LE ‘or ’ PNV AF + AE (‘ +‘
~~

‘- ‘) PNV

LE -+ PNV ‘or’ IT AE -+ PNV (‘+‘j ’ -’) AT
LE + PNV ‘or ’ PNV AE + PNV (‘ +‘

~~
‘- ‘) PNV

IT + LF AE + (‘
~~~~ ‘ t ’ - ’ )  AT

IT ÷ LI ‘and ’ IF AE ÷ ( ‘ +‘
~~

‘- ‘)  PNV

IT ÷ LI ‘and ’ PNV AT -* AF

IT ÷ PNV ‘and’ IF AT + AT (‘*~~ ‘/ ‘ )  AF
IT ÷ PNV ‘and’ PNV AT -‘• AT (I*~~~~’/ u ) PNV
IF + IP AT + PNV (I*’~~~~ 1/ l )  AF

IF ‘not ’ LP AT -
~~ PNV ( 1 * u I! I)  PNV

IF ÷ ‘not ’ PNV AF ÷ AP
IP -‘ ‘ clconst’ ’ AF + AP ‘~~~~~~~‘ AP

IP RE AF -, AP ‘~~~~ ‘ PNV

IP + ‘ ( ‘  LE ‘
~~~ 

AF ÷ PNV ‘~~~~ ‘ AP
AF PNV ‘~~~~~~‘ PNV

EX + ‘LOGIF ’ ‘(‘ IE ‘) ‘ BS AP + N

EX -+ ‘LOGIF ’ ‘(‘ PNV ‘)‘ BS AP ÷ CC
AP -’- ‘C ’ AE ‘)‘

BS + ‘ARITHIF’ ‘(‘ AE ‘) ‘ ‘ <label> ’ ‘ , ‘ ‘ <label > ’ ‘ , ‘ ‘<label> ’
BS -‘- ‘ARITHIF’ ‘ (‘ PNV ‘) ‘ ‘<labe l> ’ ‘ , ‘ ‘<label > ’ ‘ , ‘ ‘<la bel> ’

RE ÷ AE ‘<Rel op> ’ AE

RE -‘. AE ‘-cRelop> ’ PNV
RE ~~- PNV ‘<Relop> ’ AE
RE + PNV ‘<Relop> ’ PNV

Figure B5
Resulting gramar after back substitution and simplification in the

arithmetic expression sub-grammar. Additional productions required

for basic statement (BS) and relational expression (RE) are al so shown.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ _ _ _ _



- -

-54-

E ÷A E

E ÷ L E

PNV ÷ NV
PNV ÷ ‘ ( ‘  PNV ‘) ‘

LE -÷ LT AE -* PNV
LE + LE ‘or ’ LI AE -‘- SAE

IE -‘- IE ‘or ’ PNV
LE ÷ PNV ‘or’ IT SAE + AT
LE -‘- PNV ‘or ’ PNV SAE + SAE (‘ + ‘ I ’ - ’)  AT
LT + IF SAE -‘- SAE ( ‘

~~~ ‘ t ’ - ’)  PNV

LI ÷ LI ‘an d’ IF SAE —‘- PNV (‘
~~~ ‘ I ’ - ’ )  AT

IT + IT ‘and ’ PNV SAE -‘- PNV ( ‘ +‘
~~

‘- ‘) PNV

LT -‘- PNV ‘and ’ LF SAE (‘+ ‘ I  ‘-‘) AT

IT -’- PNV ‘and ’ PNV SAE + (‘ + ‘ I ’ - ’)  PNV

LF ’- LP AT + AF
IF ÷ ‘not ’ IP AT -’- AT (~~~*‘~~~~ l/ ~~~~) AF

IF -÷ ‘not’ PNV AT -÷ AT ( I* I~~~~~/~~~) PNV

LP -‘- ‘<Iconst> ’ AT ÷ PNV (~* t J ~ /~ ) AF

LP -‘- RE AT ÷ PNV ( ‘* ‘ ~~~1/ 1 )  PNV

LP -‘- ‘(‘ LE ‘)‘ AF ÷ AP
AF -* AP ‘**‘ AP
AF - ‘ -  AP ‘*~~ ‘ PNV

EX ÷ ‘IOGIF ’ ‘(‘ IE ‘ ) ‘  BS AF ÷ PNV ~~k~~~ ’ AR
EX -‘- ‘IOGIF’ ‘C ’ PNV ‘ ‘‘  BS AF PNV ‘~~~~ ‘ PNV

AP ÷ N
AP + CC

AP÷ ‘ (‘  SAE ‘ ) ‘

BS -‘- ‘ARITHIF ’ ‘(‘ AE ‘)‘ ‘<label> ’ ‘ , ‘ ‘<label> ’ ‘ , ‘ ‘<label> ’

RE ÷ AE ‘<Relop> ’ AE

Figure 86

Final IALR(1 ) grammar for FORTRAN expressions

- ~~~~~~ - -- ~~~~~~~~~~~~~~~~~~~~~ 
-



- - - 

-

~~~~~ - -~~~~~

—55—

Bibl iography

[1) American National Standards Institute, FORTRAN, ANSI X3.9 , 1966.

[2] Osterwei J , I. J. and Fosdick , L. D., DAVE - a validation , error de-
tection, and documentation system for FORTRAN programs. Software
practice and experience, 6, 4, October - December, 1976.

[3] Rauhauser, R. C., Use of the BO~~W system to generate a parser for
the DAVE II project. Tech. report CU-CS- 78, University of
Colorado, forthcoming.

[4] Grles, D., Compiler construction for digital computers. John Wiley
and Sons, New York, 1971 .

[5] Hopcroft, J. E. and hu m a n , J. D., Formal languages and their rela-
tion to automata. Addison-Wesley , Reading , Mass., 1969.

[6] IaLonde, W. R., An efficient LAIR-parser-generator. Tech. report
CSRG-2, University of Toronto, 1971. -

[7] Jensen , K. and Wlrth , N., Pascal user manual and report. Springer-
Verlag , New York, Second Ed., 1975.

[81 Mcllroy, M. 0,, ANS FORTRAN charts. Computer science technica l
report #13, Bel l Laboratories, Murray Hill , N. J.

- —- ~~~~~~~~~ — -~~ ~~~~~~~~~
--- -

~~~~~~~~~~~~~~~~
— -

~~~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-_--•_ •—-—-—. - __s_______________ - __

~____ t__ _ ______ •___ _ _
~

_
—- - — -- - -- - -

